"A música é um exercício inconsciente de cálculos." Leibniz

terça-feira, 18 de março de 2014

Medidas estatísticas: média, moda, mediana e amplitude. Revisões do Diagrama de Caule-e-folha, pictogramas, tabela de frequências absolutas e relativas, diagrama de barras e gráficos circulares






















                                                              









Diagrama de Caule-e-folha representa os dados, separando cada valor em duas partes: 
-o caule (valor à esquerda do traço vertical)
- e a folha (algarismo à direita do traço vertical).

Valor a colocar no caule são das dezenascentenas e  milhares

O Valor a colocar na folha são as unidades.

(Aqui repetimos as unidades quantas vezes o número aparece.)


OBS: Para que possa ser correctamente lido, é necessário indicar a unidade em que os dados estão representados.


Exemplo: Imagina que tens as seguintes idades para organizar:

12   14   18   23   27   29     32   37    36    47   45   41


Tens de escrever do lado esquerdo da linha a coluna das dezenas dos
números apresentados. A esta coluna dá-se o nome de caule.


1

2

3

4



De seguida escreves do lado direito da linha a coluna dos algarismos das unidades. Damos a esta coluna o nome de folhas.








Por fim organiza-se do lado direito da linha a coluna dos algarismos das unidades. Neste caso há poucas mudanças.




lê-se;    12, 14, 18, 23, 27, 29, 32, 36, 37, 41, 45  e 47


A amplitude dos dados é : Valor Máximo- valor mínimo = 47 - 12 = 35

Outra forma de representar dados estatísticos é o pictograma. 


É um gráfico em que são usados desenhos que têm relação directa com a área que está sendo pesquisada.


Por exemplo, o pictograma indica a fabricação de veículos, durante três anos.



Ou seja,
No 1º ano, foram produzidos 150 000 veículos (3 x50 000)
No 2º ano, foram produzidos  250 000 veículos  (5 x50 000)
No 3º ano, foram produzidos  300 000 veículos   (6 x50 000)



 OBS:  os pictogramas não são muito precisos e, por isso, são pouco utilizados pelos especialistas. Mas eles têm a vantagem de serem fáceis de visualizar e muito simples de interpretar.

   




Outra forma de representar os dados estatísticos é a através da  Tabela de frequências absolutas e relativas, diagrama de barras e gráficos circulares:


Exemplo:
Fez-se um estudo do número de golos sofridos pelo guarda-redes do clube de futebol do Benfica   em 30 jogos de futebol:





3         4         0         3         1         0   
2         3         1         1         1         0       
0         2         2         2         4         0        
1         0         1         0         0         0        
2         2         1         1         1         1



Com estes dados vamos construir uma tabela de frequências absolutas e relativas.



Nº de golos
Frequência absoluta
Frequência relativa
Frequência relativa em  %
Amplitude
0

9
9/30= 0,3
0,3X100%=30%
0,3x360º=108º
1

10
10/30= 0,33(3)
0,33(3)X100%=33,33%
0,33(3)x360º=120º
2

6
6/30= 0,2
0,6X100%=20%
0,2x360º=72º
3

3
3/30= 0,1
0,1X100%=10%
0,1x360º=36º
4

2
2/30= 0,066(6)
0,066(6)X100%=6,67%
0,06(6)x360º=24º
TOTAL
30
1
100%
360º



Com os dados da tabela é possível construir gráficos de barras, usando as frequências  absolutas:



Com os dados da tabela,  também é possível construir  um gráfico circular:












                                                       PARA PRATICAR, É SÓ CLICARES:










4 comentários:

  1. É a primeira vez que vejo o blog.
    Está fantástico.
    Realmente, vê-se mesmo que gosta do que faz.
    Parabéns
    Muito Obrigada

    ResponderExcluir
  2. Muito bom, mas como aluno que já fui, e que agora tenho filha aluna para voltar a rever este tema, é que noto o porquê de ter tanta dificuldade a matemática nestes tempos: É que tinha (e tenho) sempre mais que uma interpretação do tema, e no fim, nenhuma das minhas interpretações era a correcta, pois ainda havia outra mais correcta. Isto para perguntar o seguinte: Na tabela "Numero par de valores (em electricidade)" a moda é 35, porque se repetiu mais vezes. Mas se em vez de "euros" for "Visitantes de um museu" a moda já é o máximo, ou seja, 33, porque foi moda ir ao museu no mês de junho. Se achar que estou a atribuir uma palavra do português à matemática ("moda") então analisemos outro exercicio: O grafico de barras dos golos: Se na tabela de valores dispersos de 0 a 4 golos estivessem antes os meses Janeiro(numero0) a Maio(numero4), então no gráfico de barras a moda seria Fevereiro(numero1), ou seja, a barra maior, tal como falo no numero de visitantes a um museu, e não de barras supostamente iguais como fala a tabela dos "euros da electricidade". Um caso a pensar, que na altura, como outros, baralhava-me todo...

    ResponderExcluir